Equilibrium Thermodynamics

Author: Clement John Adkins
Publisher: Cambridge University Press
ISBN: 9780521274562
Size: 49.46 MB
Format: PDF, Docs
View: 4280
Download Read Online

Equilibrium Thermodynamics gives a comprehensive but concise course in the fundamentals of classical thermodynamics. Although the subject is essentially classical in nature, illustrative material is drawn widely from modern physics and free use is made of microscopic ideas to illuminate it. The overriding objective in writing the book was to achieve a clear exposition: to give an account of the subject that it both stimulating and easy to learn from. Classical thermodynamics has such wide application that it can be taught in many ways. The terms of reference for Equilibrium Thermodynamics are primarily those of the undergraduate physicist; but it is also suitable for courses in chemistry, engineering, materials science etc. The subject is usually taught in the first or second year of an undergraduate course, but the book takes the student to degree standard (and beyond). Prerequisites are elementary or school-level thermal physics.

Non Equilibrium Thermodynamics

Author: S. R. De Groot
Publisher: Courier Corporation
ISBN: 0486153509
Size: 40.35 MB
Format: PDF, Docs
View: 1456
Download Read Online

Classic monograph treats irreversible processes and phenomena of thermodynamics: non-equilibrium thermodynamics. Covers statistical foundations and applications with chapters on fluctuation theory, theory of stochastic processes, kinetic theory of gases, more.

Non Equilibrium Thermodynamics For Engineers

Author:
Publisher: World Scientific
ISBN: 9814329916
Size: 58.53 MB
Format: PDF, ePub
View: 4241
Download Read Online

The book describes in a simple and practical way what non-equilibrium thermodynamics is and how it can add to engineering fields. It explains how to describe proper equations of transport, more precise than used so far, and how to use them to understand the waste of energy resources in central unit processes in the industry. It introduces the entropy balance as an additional equation to use, to create consistent thermodynamic models, and a systematic method for minimizing energy losses that are connected with transport of heat, mass, charge, momentum and chemical reactions. Readership: Senior undergraduate and graduate students in physics, chemistry, chemical engineering and mechanical engineering.

Understanding Non Equilibrium Thermodynamics

Author: Georgy Lebon
Publisher: Springer Science & Business Media
ISBN: 9783540742524
Size: 76.10 MB
Format: PDF, Mobi
View: 7622
Download Read Online

Discover the many facets of non-equilibrium thermodynamics. The first part of this book describes the current thermodynamic formalism recognized as the classical theory. The second part focuses on different approaches. Throughout the presentation, the emphasis is on problem-solving applications. To help build your understanding, some problems have been analyzed using several formalisms to underscore their differences and their similarities.

Equilibrium Thermodynamics

Author: Mário J. de Oliveira
Publisher: Springer
ISBN: 3662532077
Size: 51.64 MB
Format: PDF, ePub, Docs
View: 3992
Download Read Online

This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edition presents expanded sections on phase transitions, liquid crystals and magnetic systems, for all problems detailed solutions are provided. It is intended for students in physics and chemistry and provides a unique combination of thorough theoretical explanation and presentation of applications in both areas. Chapter summaries, highlighted essentials and problems with solutions enable a self sustained approach and deepen the knowledge. It is intended for students in physics and chemistry and provides a unique combination of thorough theoretical explanation and presentation of applications in both areas. Chapter summaries, highlighted essentials and problems with solutions enable a self sustained approach and deepen the knowledge.

Equilibrium Thermodynamics For Engineers And Scientists

Author: Richard Wilson Haywood
Publisher: John Wiley & Sons
ISBN:
Size: 52.39 MB
Format: PDF, ePub
View: 5743
Download Read Online


Non Equilibrium Thermodynamics And The Production Of Entropy

Author: Axel Kleidon
Publisher: Springer Science & Business Media
ISBN: 9783540224952
Size: 17.64 MB
Format: PDF, Docs
View: 881
Download Read Online

The present volume studies the application of concepts from non-equilibrium thermodynamics to a variety of research topics. Emphasis is on the Maximum Entropy Production (MEP) principle and applications to Geosphere-Biosphere couplings. Written by leading researchers from a wide range of backgrounds, the book presents a first coherent account of an emerging field at the interface of thermodynamics, geophysics and life sciences.

An Introduction To Equilibrium Thermodynamics

Author: Bernard Morrill
Publisher: Elsevier
ISBN: 148315873X
Size: 29.87 MB
Format: PDF, Kindle
View: 5984
Download Read Online

An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides an introduction to irreversible thermodynamics. This book will be useful as an introductory text to thermodynamics for engineering students.

Journal Of Non Equilibrium Thermodynamics

Author:
Publisher:
ISBN:
Size: 53.35 MB
Format: PDF, ePub, Docs
View: 6856
Download Read Online


Non Equilibrium Thermodynamics Of Heterogeneous Systems

Author: Signe Kjelstrup
Publisher: World Scientific
ISBN: 9812779140
Size: 56.22 MB
Format: PDF
View: 6338
Download Read Online

The purpose of this book is to encourage the use of non-equilibrium thermodynamics to describe transport in complex, heterogeneous media. With large coupling effects between the transport of heat, mass, charge and chemical reactions at surfaces, it is important to know how one should properly integrate across systems where different phases are in contact. No other book gives a prescription of how to set up flux equations for transports across heterogeneous systems. The authors apply the thermodynamic description in terms of excess densities, developed by Gibbs for equilibrium, to non-equilibrium systems. The treatment is restricted to transport into and through the surface. Using local equilibrium together with the balance equations for the surface, expressions for the excess entropy production of the surface and of the contact line are derived. Many examples are given to illustrate how the theory can be applied to coupled transport of mass, heat, charge and chemical reactions; in phase transitions, at electrode surfaces and in fuel cells. Molecular simulations and analytical studies are used to add insight. Sample Chapter(s). Chapter 1: Scope (169 KB). Contents: General Theory: The Entropy Production for a Homogeneous Phase: The Excess Entropy Production for the Surface; Flux Equations and Onsager Relations; Transport of Heat and Mass; Transport of Mass and Charge; Applications: Evaporation and Condensation; A Nonisothermal Concentration Cell; Adiabatic Electrode Reactions; The Formation Cell; Modeling the Polymer Electrolyte Fuel Cell; The Impedance of an Electrode Surface; The Non-Equilibrium Two-Phase van der Waals Model; and other chapters. Readership: Graduate students, researchers, lecturers and professionals in physics, nanoscience and surface science.