Thermodynamics Of Crystals

Author: Duane C. Wallace
Publisher: Courier Corporation
ISBN: 9780486402123
Size: 55.71 MB
Format: PDF, Mobi
View: 3688
Download Read Online

Self-contained treatment focuses on the solution of lattice-dynamics problems, calculations of total crystal potential, evaluation of thermodynamic functions. Only modest background in quantum mechanics, solid state physics required.

Statistical Mechanics Of Solids

Author: Louis A. Girifalco
Publisher: OUP USA
ISBN: 0195167171
Size: 39.44 MB
Format: PDF, ePub
View: 4028
Download Read Online

This monograph, suitable for use as an advanced text, presents the statistical mechanics of solids from the perspective of the material properties of the solid state. The statistical mechanics are developed as a tool for understanding properties and each chapter includes useful exercises to illustrate the topics covered. Topics discussed include the theory of the harmonic crystal, the theory of free electrons in metal and semiconductors, electron transport, alloy ordering, surfaces and polymers.

Statistical Thermodynamics

Author: Erwin Schrodinger
Publisher: Courier Corporation
ISBN: 0486318605
Size: 40.40 MB
Format: PDF
View: 2000
Download Read Online

Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics — classical, quantum, Bose-Einstein, Fermi-Dirac, etc.

Modern Physical Metallurgy

Author: R. E. Smallman
Publisher: Elsevier
ISBN: 1483135799
Size: 61.68 MB
Format: PDF, Mobi
View: 2558
Download Read Online

Modern Physical Metallurgy, Third Edition discusses the fundamental principles of physical metallurgy and demonstrates how the application of the principles leads to a clearer understanding of many technologically important metallurgical phenomena. This book covers the substantial developments in the microstructural examination of metals using X-ray microanalysis, strengthening of metals, and surface and interface behavior. Numerical problems on crystallography, constitution and microstructure, diffraction, diffusion, defect theory, and thermodynamics are also provided in this publication. This edition is useful for all undergraduate degree courses in metallurgy and materials in both universities and polytechnics. The large range of topics included, from superconductivity to superplasticity and from macroscopic plasticity to fracture toughness, gives students sufficient background to the fundamental principles and practical details for examination requirements.

Liquid Crystal Displays

Author: Robert H. Chen
Publisher: John Wiley & Sons
ISBN: 9781118084342
Size: 58.96 MB
Format: PDF, Mobi
View: 5327
Download Read Online

An unprecedented look into the basic physics, chemistry, and technology behind the LCD Most notably used for computer screens, televisions, and mobile phones, LCDs (liquid crystal displays) are a pervasive and increasingly indispensable part of our lives. Providing both an historical and a business-minded context, this extensive resource describes the unique scientific and engineering techniques used to create these beautiful, clever, and eminently useful devices. In this book, the history of the science and technology behind the LCD is described in a prelude to the development of the device, presenting a rational development theme and pinpointing innovations. The book begins with Maxwell's theory of electromagnetism, and the ultimately profound realization that light is an electromagnetic wave and an electromagnetic wave is light. The power of mathematical physics thus was brought to bear upon the study of light, and particularly the polarization of light by material bodies, including liquid crystals. After a brief historical description of polarization, a physical interpretation provides substance to the mathematical concepts. Subsequent chapters cover: Thermodynamics for liquid crystals The Maier-Saupe mean field, phenomenological, static continuum, and dynamic continuum theories The transistor and integrated circuit Glass, panels, and modules The calculus of variations The active matrix Semiconductor fabrication The global LCD business Additionally, the book illustrates how mathematics, physics, and chemistry are put to practical use in the LCDs we use every day. By describing the science from an historical perspective and in practical terms in the context of a device very familiar to readers, the book presents an engaging and unique view of the technology for everyone from science students to engineers, product designers, and indeed anyone curious about LCDs. Series Editor: Anthony C. Lowe, The Lambent Consultancy, Braishfield, UK The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.

Thermodynamic Basis Of Crystal Growth

Author: Jacob Greenberg
Publisher: Springer Science & Business Media
ISBN: 3662048760
Size: 32.12 MB
Format: PDF, Mobi
View: 512
Download Read Online

This book presents a new and promising technique to grow single crystalline compound semiconductor materials with defined stoichometry. The technique is based on the high-precision experimental determination of the boundaries of the single-phase volume of the solid in the pressure-temperature-composition P-T-X phase space. Alongside test results obtained by the author and his colleagues, the P-T-X diagrams of other important materials (e.g., III-V, V-VI semiconductors) are also discussed.

Etching Of Crystals

Author: K. Sangwal
Publisher: Elsevier
ISBN: 0444599010
Size: 51.77 MB
Format: PDF, ePub, Docs
View: 662
Download Read Online

Defects in Solids, Volume 15: Etching of Crystals: Theory, Experiment, and Application focuses on the processes, reactions, and methodologies involved in the etching of crystals, including thermodynamics and diffusion. The publication first underscores the defects in crystals, detection of defects, and growth and dissolution of crystals. Discussions focus on thermodynamic theories, nature of pit sites, surface roughening during diffusion-controlled dissolution, growth controlled by simultaneous mass transfer and surface reactions, and chemical and thermal etching. The text then examines the theories of dissolution and etch-pit formation and the chemical aspects of the dissolution process, including catalytic reactions, dissolution of semiconductors, topochemical adsorption theories, and diffusion theories. The book tackles the solubility of crystals and complexes in solution and the kinetics and mechanism of dissolution. Topics include metallic crystals, semiconductors, stability of complexes, relationship between solubility, surface energy, and hardness of crystals, and solvents for crystals and estimation of crystal solubility in solvents other than water. The publication is a dependable source of data for readers interested in the etching of crystals.

Symmetry And Physical Properties Of Crystals

Author: Cécile Malgrange
Publisher: Springer
ISBN: 9401789932
Size: 42.29 MB
Format: PDF, Kindle
View: 905
Download Read Online

Crystals are everywhere, from natural crystals (minerals) through the semiconductors and magnetic materials in electronic devices and computers or piezoelectric resonators at the heart of our quartz watches to electro-optical devices. Understanding them in depth is essential both for pure research and for their applications. This book provides a clear, thorough presentation of their symmetry, both at the microscopic space-group level and the macroscopic point-group level. The implications of the symmetry of crystals for their physical properties are then presented, together with their mathematical description in terms of tensors. The conditions on the symmetry of a crystal for a given property to exist then become clear, as does the symmetry of the property. The geometrical representation of tensor quantities or properties is presented, and its use in determining important relationships emphasized. An original feature of this book is that most chapters include exercises with complete solutions. This allows readers to test and improve their understanding of the material. The intended readership includes undergraduate and graduate students in materials science and materials-related aspects of electrical and optical engineering; researchers involved in the investigation of the physical properties of crystals and the design of applications based on crystal properties such as piezoelectricity, electro-optics, optical activity and all those involved in the characterization of the structural properties of materials.

Principles Of Solidification

Author: Martin Eden Glicksman
Publisher: Springer Science & Business Media
ISBN: 9781441973443
Size: 71.91 MB
Format: PDF, ePub, Docs
View: 1593
Download Read Online

“Principles of Solidification” offers comprehensive descriptions of liquid-to-solid transitions encountered in shaped casting, welding, and non-biological bulk crystal growth processes. The book logically develops through careful presentation of relevant thermodynamic and kinetic theories and models of solidification occurring in a variety of materials. Major topics encompass the liquid-state, liquid-solid transformations, chemical macro- and microsegregation, purification by fractional crystallization and zone refining, solid-liquid interfaces, polyphase freezing, and rapid solidification processing. Solid-liquid interfaces are discussed quantitatively both as sharp and diffuse entities, with supporting differential geometric descriptions. The book offers: • Detailed mathematical examples throughout to guide readers • Applications of solidification and crystal growth methodologies for preparation and purification of metals, ceramics, polymers and semiconductors • Appendices providing supporting information on special topics covered in the chapters. Readers in materials, metallurgical, chemical, and mechanical engineering will find this to be a useful source on the subjects of solidification and crystal growth. Chemists, physicists, and geologists concerned with melting/freezing phenomena will also find much of value in this book.

Thermodynamics Of Flowing Systems

Author: Antony N. Beris
Publisher: Oxford University Press
ISBN: 9780195344882
Size: 73.30 MB
Format: PDF, ePub, Mobi
View: 6541
Download Read Online

This much-needed monograph presents a systematic, step-by-step approach to the continuum modeling of flow phenomena exhibited within materials endowed with a complex internal microstructure, such as polymers and liquid crystals. By combining the principles of Hamiltonian mechanics with those of irreversible thermodynamics, Antony N. Beris and Brian J. Edwards, renowned authorities on the subject, expertly describe the complex interplay between conservative and dissipative processes. Throughout the book, the authors emphasize the evaluation of the free energy--largely based on ideas from statistical mechanics--and how to fit the values of the phenomenological parameters against those of microscopic models. With Thermodynamics of Flowing Systems in hand, mathematicians, engineers, and physicists involved with the theoretical study of flow behavior in structurally complex media now have a superb, self-contained theoretical framework on which to base their modeling efforts.